Multi-Task Transfer Learning for Fine-Grained Named Entity Recognition

Masato Hagiwara¹, Ryuji Tamaki², Ikuya Yamada²

Named Entity Recognition (NER)

- Few systems deal with more than 100+ types
 o cf. FIGER 112 types (Ling and Weld, 2012)
- Entity typing
 - (Ren et al., 2016), (Shimaoka et al., 2016), (Yogatama et al., 2015)

Can we solve NER (detection and classification) with 7,000+ types in a generic fashion?

Challenge 1: Lack of Training Data

Lack of NER datasets annotated with AIDA

Silver-standard dataset with YAGO annotations

Transfer learning to AIDA

Challenge 2: Large Tag Set

Cost of CRF = $O(n^2)$ (n = # of types)

Challenge 3: Ambiguity in Types

House103544360 VS House107971449

Hierarchical Multi-label Classification

WorldOrganization108294696

VS Alliance108293982

Plaza108619795 VS Plaza103965456

PhysicalEntity Object Whole Artifact Structure Memorial NationalMonument YagoGeoEntity Location Region District AdministrativeDistrict Municipality City

The Statue of Liberty in New York

Challenge 4: Hierarchical Types

Hierarchy-Aware Soft Loss

Type confusion weight W

GOLD citan of port port governor region 70C $\times W$ Soft GOLD Labels Cross entropy loss

Experiments

Datasets

1) Pre-training

(subset)

OntoNotes 5.0 (subset) for detection Silver-standard Wikipedia for classification Manually-annotated subset for dev.

 2) Fine-tuning Manually-annotated WIkipedia Manually-fixed AIDA sample data (LDC2019E04) Manually-annotated OntoNotes 5.0

Type conversion
 2-layer feed-forward with ReLU

Settings

 \bullet

Embeddings

bert-base-cased

Optimization
 Adam (lr = 0.001) for pre-training
 BertAdam (lr = 1e-5 with 2,500 warm-up)

2-layer BiLSTM (200 hidden units)

Results

Performance on validation set

Performance on test set

Method	Prec	Rec	F1
Direct	0.45	0.42	0.43
Fine-tuned	0.65	0.57	0.61
Fine-tuned w/o loss	0.60	0.50	0.55

Run	Prec	Rec	F1
1st submission	0.504	0.468	0.485
After feedback	0.506	0.493	0.499

Error Analysis

- Location vs GPE
 - "Southern Maryland"

OK: loc.position.region, NG: gpe.provincestate.provincestate

- Ethnic/national groups
 - "Syrians"
 OK: no annotation, NG: gpe.country.country
- Type too specific
 - o "Obama"

OK: per.politician, NG: per.politician.headofgovernment

- Type too generic
 - "SANA news agency"

OK: org.commercialorganization.newsagency, NG: org

Conclusion

- Multi-task transfer learning approach for ultra fine-grained NER
 - Transfer learning from YAGO to AIDA
 - Multi-task learning of named entity detection and classification
 - Multi-label classification of named entity types
 - Hierarchy-aware soft loss

Improvement Ideas

- Using "type name" embeddings
 - e.g., per.professionalposition.spokesperson
 - e.g., org.commercialorganization.newsagency
- Gazetteers and handcrafted features
- Hierarchical model
 - BIO+loc/org/per/... -> more fine-grained types
- Ensemble
- Post-processing
- Finally... read the annotation guideline and examine the training data!

Thanks for listening!

Masato Hagiwara¹, Ryuji Tamaki², Ikuya Yamada²

